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ABSTRACT
We study different means to extend offsetting based on skeletal structures beyond the well-known
constant-radius andmiteredoffsets supportedbyVoronoi diagramsand straight skeletons, forwhich
theorthogonal distanceof offset elements to their respective input elements is constant anduniform
over all input elements. Our main contribution is a new geometric structure, called variable-radius
Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose dis-
tance to the input is allowed to vary along the input. We discuss properties of this structure and
sketch a prototype implementation that supports the computation of variable-radius offsets based
on this new variant of Voronoi diagrams.
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1. Introduction

1.1. Constant and variable offsetting

Offsetting is an important task in diverse applications in
the manufacturing business. For a set C in the Euclidean
plane, the constant-radius offset with offset distance r is
the set of all points of the plane whoseminimumdistance
from C is exactly r. Formally, this offset can be defined
as the boundary of the set

⋃
p∈C B(p, r), where B(p, r)

denotes a disk of radius r centered at the point p. That
is, the offset is the envelope of all disks of equal radius
that have their centers along the input. Mathematically,
the same offset can also be obtained as the Minkowski
sum of C with a disk with radius r centered at the origin.

For polygons such a constant-radius offset will consist
of one or more closed curves made up of line segments
and circular arcs; see Fig. 1, left. Held [11] describes how
to use a Voronoi diagram, which is a versatile tool in
computational geometry, to compute such an offset effi-
ciently and reliably for curvilinear inputs specified by
straight-line segments and circular arcs. The underlying
(generalized) Voronoi diagram is defined by the input
line segments and circular arcs; it can be computed by
the VRONI/ArcVRONI package [12].

Mitered offsets differ from constant-radius offsets in
the handling of non-convex vertices of an input poly-
gon: Instead of adding circular arcs to the offset curve,
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the offset segments of the two edges incident to a non-
convex vertex get extended until they intersect. This
type of offset can be generated in linear time from a
straight skeleton [16]. In order to avoid very sharp cor-
ners in the offset, the linear axis can be used in place
of the straight skeleton [16], thus obtaining offsets with
multi-segment bevels. See Fig. 1, center and right. State-
of-the-art straight skeleton codes are presented by the
authors [14,17].

A common feature of all these offsets is that the
orthogonal distance of each offset element from its defin-
ing contour element is constant.

Several applications in industry, such as for garment
manufacture or shoe design, need to construct differently
sized pieces from a single master design. One obvious
method is to scale themaster template accordingly. How-
ever, a naive approach would scale all elements equally,
which need not always be good enough. (For instance,
one might want to shrink the overall size of a shirt with-
out necessarily shrinking its collar size by the same ratio.)
A different approach to resizing is to use offsetting. To be
able to control the offsetting process, a common demand
is to create non-constant offsets, i.e., offsets where the dis-
tance to the original input curve varies along that input.
Brush stroke generation and the generation of ornamen-
tal seams are other sample applications that benefit of
variable-distance offsets.
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Figure 1. (Left) The Voronoi-diagram (blue) of an input polygon P (black) enables efficient computation of the constant-radius offset.
One interior offset curve of P is shown in green. The offset curve consists of line segments and circular arcs, and any point on it is at the
same distance from the input in the standard Euclidean distance. (Center) The offset induced by the straight skeleton (blue) can have
sharp corners that are far away from their respective input vertex in the standard Euclidean distance. (Right) Offsetting using the linear
axis (blue) bevels the offset compared to the one induced by the straight skeleton. The offset still consists only of line segments.

Variable-distance offset curves and surfaces are known
in the literature. See, for instance, the work by Qun and
Rokne [18] or Rossignac and Zhuo [19,21]. However,
prior art seems to concentrate on defining and comparing
different offsets and is less concerned with setting up
a geometric framework that is general enough to sup-
port computing arbitrary offsets efficiently and robustly.
One common approach applied in practice for con-
structing variable offsets seems to be based on sampling.
Rendering-based methods also are feasible for sketching
such offsets by means of graphics hardware; see, e.g., Li
et al. [15]. However, rendering-based methods incur the
additional problem of having to extract the actual offset
curves from the rendered images.

1.2. Our contribution

We investigate skeletal structures that support the gener-
ation of offsets of planar straight-line graphs such that the
orthogonal distance of an offset element from its defining
input element is not necessarily uniform among all input
elements, or even constant per input element. While
weighted straight skeletons provide a natural means for
computing offsets where the orthogonal distances are
non-uniform but constant per input element, our inves-
tigations show that there is no obvious way to generalize
them such that non-uniform and non-constant distances
are supported.

Hence, we focus our attention on a generalization of
Voronoi diagrams:We introduce variable-radius Voronoi
diagrams of planar straight-line graphs and analyze prop-
erties of their bisectors. Similar to Voronoi diagrams in
the case of constant-radius offsets, this structure captures
all the information that is needed to compute variable-
radius offsets efficiently. We conclude with discussing
our proof-of-concept code for computing variable-radius
Voronoi diagrams and sketch how offsetting can be
extended to more general input primitives, such as cir-
cular arcs, in order to support variable-radius offsets that
are piecewise G1 continuous.

2. Generalized offsets based on straight
skeletons

2.1. Straight skeletons andwavefront propagation

The straight skeleton of a simple polygon P is a skele-
tal structure first introduced to computational geometry
by Aichholzer et al. [3] twenty years ago. It is similar
to the Voronoi diagram but instead of being defined by
a distance metric it is defined by a so-called wavefront
propagation process.

Each edge of the polygon emits an edge of the wave-
front towards the polygon’s interior, moving at unit speed
in a self-parallel manner. The polygons formed by these
edges at any given time t ≥ 0 form the wavefront of P at
time t.

Initially, at time t=0, the wavefront is identical to the
input polygon. As the wavefront propagates and edges
of the wavefront interact, the wavefront will have to
be updated to maintain the simplicity of the wavefront.
These changes are called events, and one can distinguish
between two main types of events, namely edge events,
which happen when an edge of the wavefront collapses
to zero length and is removed from the wavefront, and
split events which occur when a previously non-incident
vertex “crashes” into the interior of a wavefront edge and,
thus, the wavefront polygon is split into two portions.

This propagation process continues until all elements
of the wavefront have collapsed. The straight skeleton
then is defined as the geometric graph whose edges are
the traces of wavefront vertices over the propagation
period; see Fig. 2. It is customary to refer to edges of the
straight skeleton as arcs and to call its vertices nodes to
distinguish them from input or wavefront edges and ver-
tices. The straight skeleton tessellates the input polygon
into non-overlapping faces. We refer to Huber [13] for
a detailed discussion of straight skeletons; recent algo-
rithms and codes by the authors for computing straight
skeletons are documented in [14, 17].

The weighted straight skeleton is a generalization of
the straight skeleton first mentioned by Aichholzer and
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Figure 2. A simple polygon (black) and a family of wavefronts,
i.e., mitered offset curves, at equidistant time intervals (gray). The
straight skeleton (blue) traces the vertices of the wavefront over
time. One offset is shown in a more distinct dark green.

Aurenhammer [2] and Eppstein and Erickson [10].
Wavefront edges no longer necessarily move at unit
speed, but instead move at different speeds correspond-
ing to individual edge weights; see Fig. 3. Several prop-
erties of weighted straight skeletons, such as whether
faces remain monotone to their input site, were only very
recently investigated by Biedl et al. [7, 8].

2.2. Offsetting using straight skeletons

Straight skeletons provide a natural and efficient instru-
ment to obtain mitered offset curves. Palfrader and
Held [16] demonstrate that Aichholzer and Aurenham-
mer’s triangulation-based algorithm [2] for comput-
ing unweighted straight skeletons can be implemented
robustly on standard IEEE 754 double-precision floating-
point arithmetic. Their experiments show that comput-
ing the straight skeleton of inputs of a million vertices
takes under ten seconds, and that mitered offsets can be
computed in fractions of a second if a straight skeleton is
available.

Their approach for obtaining unweighted mitered
offsets from the unweighted straight skeleton general-
izes naturally to offsetting with variable distances using

the weighted straight skeleton. Both unweighted and
weighted offsets consist of straight-line segments only.
Each of these line segments is parallel to its correspond-
ing input segment, at a distance proportional to the input
segment’s weight.

While the offsetting distance can be varied by input
segment, it does not change along a single input segment.
We point out that it is not possible to achieve such a vari-
ation by splitting an input segment into multiple smaller
collinear segments with variable weights: As soon as
collinear wavefront segments become incident, the wave-
front propagation requires that a single preferred - say
the fastest or the slowest - wavefront segment takes over
the corresponding portion of the wavefront [7]. Even
slight perturbations would not produce the desired result
as the fastest wavefront edge would almost immediately
dominate the wavefront.

2.3. Generalized skeletons based on non-parallel
wavefront edges

In the standard weighted straight skeleton described
above, input segments are assigned a weight and then
wavefront edges propagate at speeds that correspond to
these weights. These weights imply specific velocities
for the wavefront vertices: Each wavefront vertex moves
along a bisector with the velocity, i.e. speed and direction,
necessary to “keep up” with the propagating wavefront
edges.

To introduce non-parallel offset segments one might
be tempted to assign velocities directly to the wavefront
vertices. Unfortunately, offsets defined based on such an
approach suffer from two problems that diminish their
practical applicability.

First of all, such a setup may cause offset segments
to rotate during the wavefront propagation such that the
inwards normal of an offset segment is actually pointing
towards the input segment instead of away from it: See the
dotted normal in Fig. 4. Furthermore, an offset for some

Figure 3. The weighted straight skeleton (blue) of a polygon (black) with a family of offset curves (gray, green).
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time tmay intersect an offset of some later time t + δ: the
green offset in Fig. 4 intersects the previous one.

Figure 4. Picking velocities of wavefront vertices will result in
undesirable behavior such as offset segments rotating or offsets
from different times intersecting each other.

To avoid the problems that arise when assigning veloc-
ities directly to the wavefront vertices, one could try to
instead specify an orthogonal propagation speed at the
endpoints of each input segment; see Fig. 5. This seems
promisingwhen just looking at the offset segments. How-
ever, such a setup results in wavefront vertices that no
longer move along straight lines. Thus, the arcs of the
underlying skeletal structure will not be straight-line seg-
ments either. Therefore it seems unlikely that the theory
of straight skeletons will be of much help in understand-
ing or even constructing such structures. To overcome
this problem we resort to generalized Voronoi diagrams;
they will provide adequate support for the generation of
generalized offsets with non-constant distances.

(a) (b)

Figure 5. (Left) Propagation speed of the wavefront emanated
from the lower middle input segment. (Right) Three offsets as a
result of such a propagation scheme. Picking a variable orthog-
onal propagation speed will result in reasonable offsets again.
However, the arcs of this skeletal structure are no straight-line seg-
ments and the theory of straight skeletons is no longer applicable.

3. Generalized offsets based on Voronoi
diagrams

3.1. Preliminaries

The Voronoi diagram VD(S) of a set S of points in
the plane, called sites, tessellates the plane into interior-
disjoint regions. Each so-called Voronoi region belongs to
exactly one site. The Voronoi region of a site s is given by
the loci of all points in the plane whose closest site is s.
The prairie-fire analogy illustrates this concept nicely:
Suppose that fires start at different point locations on

the prairie and that each fire expands into all directions,
propagating at uniform speed. A point in the prairie then
belongs to the Voronoi region of the particular fire which
reached it first. The border between any two Voronoi
regions lies on a straight line, namely the bisector of the
regions’ sites; see Fig. 6, left.

Voronoi diagrams have been generalized in several
different ways, such as using a different distance measure
(e.g., Manhattan distance instead of Euclidean distance),
choosing different types of input sites instead of just
points (e.g., line segments or circular arcs), or assigning
both additive and multiplicative weights to sites. In the
prairie-fire analogy, the latter generalization corresponds
to starting certain fires sooner or have some spread faster.
Figure 6, right, shows the Voronoi diagram of a multi-
plicatively weighted point set. We refer to Aurenhammer
and Edelsbrunner [6] for an algorithm for computing
weighted Voronoi diagrams.

3.2. Variable-radius offset

Now consider a set S of vertices in the Euclidean plane
and line segments between some pairs of these vertices.
The line segmentsmay share common endpoints but they
may not intersect otherwise. (In computational geome-
try, such an input is called a planar straight-line graph,
PSLG.) Let us denote by S ⊂ R

2 the set of points cov-
ered by all vertices and line segments of S. Furthermore,
we consider a weight function σ : S → R

+
0 defined in the

following way:

• To each vertex p of S some non-negative weight σ(p)
is assigned.

• Then, for a point f on a line segment pq of S, with f =
μp + (1 − μ)q for some 0 ≤ μ ≤ 1, the weight σ(f )
is given by σ(f ) := μσ(p) + (1 − μ)σ(q).

That is, after assigning weights to all vertices of S, the
weights for points on segments of S are obtained by a
linear interpolation of the corresponding vertex weights.

To motivate the definition of the offsets we recall the
prairie-fire model. However, now we allow fires to prop-
agate at different speeds. Then the boundary of the area
burnt by the fire would give the offset. Hence, at each
point p of Swe place a wavefront disk whose radius grows
over time. Initially all disks have radius zero. As time
increases the radius of each disk grows proportional to
the weight σ(p) of its center point p ∈ S. The variable-
radius offset for a given time is the envelope of this set
of disks. As intended, input sites with small weight will
induce an offset that is closer to them, and input sites that
were assigned larger weights will cause their offsets to be
farther away.
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Figure 6. (Left) The Voronoi diagram of a point set. Each site’s Voronoi region is shaded in a different color. (Right) A multiplicatively
weighted Voronoi diagram of the same point set. Verticesmarkedwith� have been assigned aweight of 3.0, thosemarkedwith× have
weight 1.5, while the vertices shown with • have a weight of 1.0. The bisectors of vertices of different weights lie on circular arcs. Note
that some Voronoi regions are disconnected.

Similar to the standard constant-radius offset, the
variable-radius offset can be seen as a generalized
Minkowski sum: It is the boundary of the set

⋃
p∈S

B(p, σ(p) · t). Note that the term σ(p) · t replaces the
constant radius r in the standard Minkowski sum. Since,
by its very definition, the offset distance along a variable-
radius offset curve varies, we find it more convenient
to refer to the time t than to a distance to characterize
variable-radius offsets.

3.3. Variable-radius Voronoi diagram

We now turn our attention to a skeletal structure which,
similar to Voronoi diagrams and straight skeletons in
the case of constant-radius and mitered offsets, cap-
tures the geometry of variable-radius offsets. The set S of
input sites is a set of both vertices and (non-intersecting)
line segments between pairs of these vertices, i.e., a pla-
nar straight-line graph. We introduce the variable-radius
Voronoi diagram VDv(S) of S as a generalized Voronoi
diagram with one main generalization:

• We assign multiplicative weights to these sites. As
described above, a vertex s ∈ S is assigned a weight
σ(s), and the weight of a point on a line segment
pq changes linearly between its vertices from σ(p) to
σ(q).

All weights are assumed to be non-negative. (In a
practical application all weights will be strictly positive.)

The distance of a point u in the plane to a vertex site s ∈
S is defined as the Euclidean distance from u to s, divided
by the weight of that site:

d(u, s) :=

⎧⎪⎪⎨
⎪⎪⎩

|us|
σ(s)

if σ(s) �= 0,

0 if σ(s) = 0 ∧ u = s,
∞ if σ(s) = 0 ∧ u �= s,

where |us| denotes the standard Euclidean length of the
straight-line segment between u and s. The distance of u
to a line-segment site pq ∈ S is naturally defined as the
minimum distance of u to any point of the line segment:

d(u, pq) := min
v∈pq

d(u, v).

While this may seem unwieldy at first, we show below
that d(u, pq) can be computed easily using elementary
geometry.

As in the case of the standard Voronoi diagram, every
point in the plane is in the (generalized) Voronoi region
of the site that it is closest to. An arc that separates two
regions comprises all points that have the same distance
to two sites and a larger distance to all other sites.

The variable-radius Voronoi diagram inherits several
important properties from the multiplicatively weighted
Voronoi diagram of points. In particular, the region of a
given site need not be connected, cf. Fig. 6 (right). That
is, the region of a site may comprise two or more discon-
nected faces in the Voronoi diagram. Furthermore, bisec-
tors between two vertices are circles or circular arcs [6].
Other bisectors, however, are more complex curves in
general. A special case is given by the bisector between
a vertex and a line segment of constant weight: It will be
a conic section where the vertex site is the focus point
and the supporting line of the segment site is the direc-
trix of the conic. Depending on the ratio of the weights
of the segment and the vertex, the bisector will either be
an ellipse, a parabola, or a hyperbola.

To better understand the shape of variable-radius off-
set curves and bisectors, we start with investigating the
wavefront propagation defined by one weighted line seg-
ment and its two weighted vertices. We will establish that
the offset of a line segment is again a line segment. To
simplify matters even further, we begin with studying
weighted line segments where one vertex has a weight
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Figure 7. An offset (green) of a weighted line segment pqwhere the weight of p is zero. The circular arc T separates the Voronoi region
of the (open) line segment pq from the Voronoi region of the vertex q.

of zero, and then we will continue with showing that the
general case is very similar.

3.3.1. A line segment with zero weight on one end
Consider the line segment pq, with σ(p) = 0 and σ(q) >

0. What is the region of the plane that is reached from a
wavefront sent out from this line segment after a certain
time t has elapsed? What is the boundary of this region,
i.e., the offset curve that corresponds to this particular
time?

Since σ(q) > σ(p), for sufficiently large values of t the
area bounded by the offset curve will be a disk centered at
q: The larger growth rate of the wavefront disk centered
at q implies that it dominates all growing disks centered
along other points of pq. The answer is less obvious for
sufficiently small values of t when this area is not yet a
disk.

So, consider a time t for which the area covered by the
wavefront is not yet a disk. We call those values of t per-
missible time values; wewill shortly see how to determine
the interval of permissible time values. Let λ := σ(q) · t.
Hence, λ equals the radius of the wavefront disk B(q, λ)

at time t centered at the vertex q. Furthermore, let L be
a line through p that is tangent to B(q, λ). We denote the
touching point of L and B(q, λ) by v; see Fig. 7.

Let u be an arbitrary point on pv, and let μ :=
|pu|/|pv|. Thus, u partitions pv into pu and uv such that
u = (1 − μ)p + μv. Let f be the point on pq given as
(1 − μ)p + μq. By the Intercept Theorem, |fu| = μ · λ

and, therefore,B(f ,μ · λ) is tangent to L. Since the weight
along line segments is interpolated linearly, we observe
that the weight σ(f ) of point f is μ · σ(q). Thus, B(f ,μ ·
λ) = B(f , σ(f ) · t).

Now recall that our choice of u on pv was arbitrary. It
follows that for any point u on pv we can find a unique

point f on pq such that B(f , σ(f ) · t) touches L tangen-
tially in u. Conversely, for any f on pq there is exactly one
point u on pv that is covered by the disk B(f , σ(f ) · t).

Any point beyond v on the supporting line of pv is too
far away to have been reached at time t from any wave-
front disk centered at some point of pq. We conclude that
the area covered by proportionately sized disks along pq
comprises the triangles �(p, v, q) and �(p, v′, q) as well
as the disk B(q, λ). Of course, the boundary of this area
consists of the two line segments pv and pv′ and of one
circular arc. See the green and red entities in Fig. 7.

3.3.2. Partitioning into Voronoi regions
We prefer to regard the input site pq as the open line seg-
ment between p and q, exclusive of p and q, since this
allows a meaningful partitioning of the area covered by
the wavefront at time t. Then the circular arc section
of the offset belongs to the input site q alone, and the
two straight-line segments are the offset segments of pq.
Hence, the offset of a weighted straight-line segment is
indeed again a line segment and the offset of a vertex is a
circular arc.

Note that the offset of the weighted line segment van-
ishes as soon as the wavefront disk of q dominates all
other wavefront disks. Of course, this happens when the
wavefront disk of q reaches p. Since the radius of this disk
is given by σ(q) · t for time t, we get t = |pq|/σ(q) as
the time when the offset of pq turns into a disk. The per-
missible time interval in the case of σ(p) = 0 is therefore
t ∈ [0, |pq|/σ(q)].

Furthermore, if we consider t ∈ [0,∞), the area traced
out by offsets of the open segment pq is the open disk
whose diameter is pq. We call this disk the area of influ-
ence of pq. In this simple example, the area traced out by
offsets of q is the remaining rest of the plane.
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3.3.3. Finding the weighted distance of a point to a
line segment

Again, consider an input line segment pq where σ(p) =
0. Given a point u in the area of influence of pq, how can
we determine the weighted distance and, thus, also the
time t such that u lies on the offset of pq at time t?

Construct the line L through p and u, then construct
the circle T whose diameter is pq. The intersection of L
and T is denoted by v. By Thales’ Theorem, pv and qv
are orthogonal; see Fig. 7. We find that the wavefront
emanated by pq has reached u at time t = |qv|/σ(q).

3.3.4. Line segments with constant weights
Oncemore, we consider a line segment pq but nowwe no
longer restrict σ(p) to zero. We can distinguish between
two cases depending on whether σ(p) = σ(q) or not. If
the line segment is of uniform weight, then the offsets of
pq at time t are copies of the original line segment, moved
orthogonally by t · σ(p); see Fig. 8.

Figure 8. The offsets of a uniformly weighted line segment
(gray).

3.3.5. Line segments with variable weights
If, however, the weights of the two vertices p,q differ, i.e.,
if σ(p) �= σ(q), then this case can be treated similar to
the case where one weight was zero.

Assume, without loss of generality, that σ(p) < σ(q).
We consider the two wavefront disks B(p, σ(p) · t) and
B(q, σ(q) · t) for all those values of t for which the disk
centered at p is not entirely contained in the disk centered
at q. Again, we call these the permissible time values of t.

The Intercept Theorem implies that all lines which are
tangent to both B(p, σ(p) · t) and B(q, σ(q) · t)will inter-
sect the supporting line of pq in a common point p′; see
Fig. 9. Note that this holds for all permissible values of
t. To compute the position of p′, we note that the tri-
angles �(p′up) and �(p′vq) are similar. Thus, |p′p|

σ(p)·t =
|p′q|

σ(q)·t .We substitute |p′q|with |p′p| + |pq|, solve for |p′p|,
and find that the point p′ is the distance |p′p| = |pq| ·

σ(p)
σ (q)−σ(p) away from p.

The offset of pq at time t is therefore on the same sup-
porting line as the offset of p′q at time t, with σ(p′) := 0,
but it is bounded on the side of p by the arc sent out by p.

We conclude that the Voronoi region of p is a disk whose
diameter is p′p, the Voronoi region of the open segment
pq is a disk whose diameter is p′qwithout the region of p,
and the Voronoi region of q is the entire rest of the plane.
See also Fig. 10, left.

The point p′ is also the point that is reached at the
same time by the wavefronts emanated from p and q and
from every point on pq. Therefore, the permissible time
interval is [0, |p′q|/σ(q)], or equivalently, [0, |p′p|/σ(p)].

3.3.6. Bisectors of a variable-radius Voronoi diagram
The bisector between a pair of weighted points is a cir-
cle, which is a property inherited from multiplicatively
weighted Voronoi diagrams of point sets. This is easy to
see if we recall that ancient Apollonius of Perga showed
that a circle is the set of points of a fixed ratio of distances
to two foci. The two foci in this case are the two input
sites, and their bisector is the Apollonian circle which
traces out the ratio of their two weights. This argument
also provides a second explanation as to why the bisector
between an (open) line segment and either of its inci-
dent vertices is a circle: This bisector is the limiting case
of the Apollonian circle of the vertex and an infinitesi-
mally close point on the line segment with proportionally
infinitesimally smaller or larger weight.

Unfortunately, the bisectors between vertices and non-
incident segments or between two line segments are not
nearly as nicely behaved. Rather, they are higher-order
curves that are cumbersome to parameterize.

3.4. Offsetting

While the bisectors of VDv(S) consist also of non-trivial
curves, the variable-radius offset itself comprises line seg-
ments and circular arcs only. In particular, in Voronoi
regions that belong to line-segment sites the offset will
also be a line segment (see the previous section), whereas
in regions associated with vertices the offset element will
be a circular arc; see Fig. 10, right.

We can compute this variable-radius offset of S for
a given time t from the variable-radius Voronoi dia-
gramVDv(S). The approach is identical to how constant-
distance offsets are computed based onVoronoi diagrams
or straight skeletons [11,16]. Roughly, we iterate through
all the arcs of VDv(S) and add offset elements in each
face that contains points at distance t · σ . The topologi-
cal information encoded in VDv(S) enables us to do this
in time linear in the size of the Voronoi diagram and in a
single iteration, without the need to compute all pair-wise
self-intersections of offsets. Furthermore, no detection
and removal of invalid loops is required even for large
offset distances.
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Figure 9. (Left) Theoffsets (gray) of aweighted line segmentpq. The supporting linesof all offset segmentsmeet in a commonpointp′ on
the supporting line of pq. The bisectors exhibit another interesting property: They are full circles whose diameters on the line supporting
pq are bounded by p′ and their individual defining point site. (Right) Using the Intercept Theorem we can compute the position of p′ on
the supporting line of pq.

Figure 10. (Left) The variable-radius Voronoi diagram (blue, dotted) of a simple input of two vertex sites and their connecting line seg-
ment (black). A family of offset curves is shown in green (dashed). (Right) The variable-radius Voronoi diagram inside a polygonal input.
Themarked input vertices on the left have been assigned a weight of 2.0 while the single marked vertex on the right has a weight of 0.5.
All other vertices were given the standard weight of 1.0. A single offset curve is drawn in green.

Figure 11. Another variable-radius Voronoi diagram of a polygonal input with vertex weights of 2.0 (disks), 0.5 (squares), and 1.0
(unmarked vertices). One offset is drawn in green. Note that it consists of two components.

For instance, in Fig. 11 the offset distance chosen
is large when compared to the feature size of parts of
the polygon. A simple inspection of the numerical data
associated with the Voronoi diagram shows that some
Voronoi arcs and faces on the right-hand side of the poly-
gon do not contain points at the offset distances sought.
That is, the availability of the variable-radiusVoronoi dia-
gram suffices to infer that no offset segments and arcs
need to be added there.

3.5. Implementation

Edelsbrunner and Seidel [9] established the connection
between Voronoi diagrams in R

d with lower envelopes
in R

d+1. Setter et al. [20] used this connection to add a
powerful tool to CGAL [1] for computing Voronoi dia-
grams via lower or upper envelopes of suitably formed
surfaces in 3D. For the point set Voronoi diagram it is
well known that these surfaces are cones, and extending
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Figure 12. Variable Voronoi diagrams with one offset curve. The size of vertex markers is proportional to their weight.

this to weighted point sets is readily done by varying the
dihedral angle of these cones.

The variable-radius Voronoi diagram inherits cones
as the surfaces of vertices from the weighted point set
Voronoi diagram. The surfaces that correspond to line
segments are more involved. We have shown that the
offset of a line segment is again a line segment. If we
consider a family of offset segments of an input segment
and lift each offset segment along the z-axis by a distance
that corresponds to the time when it was reached by the
wavefront, we obtain a ruled surface. Recall that the sup-
porting lines of all offsets intersect at a common point on
the supporting line of the input site. Therefore, our ruled
surface actually is a sub-surface of a right conoid. That
is, it is a ruled surface generated by straight lines that all
intersect a fixed straight line, the axis, perpendicularly.

CGAL’s 3D envelope computation algorithm is generic
in the sense that it can deal with arbitrary terrain sur-
faces as long as it has some means to learn about cer-
tain geometric properties of those surfaces. The algorith-
mic back-end calls a user-supplied traits-class which is
responsible for answering queries such as which of two
3D surfaces has a larger z-coordinate above a given point
p on the xy-plane.

Our current implementation is based on CGAL and
supports an approximate computation of the variable-
radius Voronoi diagram. However, CGAL also provides
the machinery required for an implementation of an
exact version, albeit with some additional engineering
work.

Since our proof-of-concept implementation has not
yet been engineered for speed or robustness, we refrain
from presenting any performance statistics here.

3.6. Extending beyond polygonal input

So far we have limited ourselves to input sites that are
either points or line segments. Generalizing the class of

input sites would be useful for supporting offsets that are
(piecewise) G1 continuous for appropriate G1 inputs.

Currently, we can handle circular arcs by sampling
them; see Fig. 12. Note that the offset of a variable-
weighted circular arc is not a circular arc. Therefore, for
supporting circular arcs directly, a better understanding
of the mathematical characteristics of the corresponding
Voronoi bisectors and of the resulting offsets would be
required.

4. Conclusion

We investigate a new geometric structure which we call
variable-radius Voronoi diagram. While this structure
is of sufficient theoretical interest on its own grounds,
we demonstrate its practical applicability to constructing
variable-radius offsets, i.e., a specific variant of offsets for
which the orthogonal distance to the input is allowed to
vary along the input. Our prototype implementation sup-
ports the computation of variable-radius offsets for gen-
eral planar straight-line graphs. With some extra amount
of work it could be generalized to support curvilinear
input defined by straight-line segments and circular arcs.

From a theoretical point of view, it would be possible
to extend the class of input sites allowed even beyond cir-
cular arcs to more general primitives such as conics or
splines. However, for such a generalization care has to
be taken to handle sites correctly once they themselves
have a non-empty medial axis. One feasible approach
to overcoming this problem would be to deal with only
those primitives which also form so-called ”harmless
curves”, as defined byAlt and Schwarzkopf [5]. Themore
recent paper by Alt, Cheong and Vigneron [4] presents
a randomized-incremental algorithm for computing the
Voronoi diagram of n such curves in O(n log n) time.
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